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reported above, a clean separation of unreacted substrate from 
products by trap-to-trap distillation was not possible. The organic 
reactant-product mixture was analyzed by VPC after removal of 
excess nitrous oxide. 

Most VPC analysis was conducted on various columns of dinon-
ylphthalate. Other VPC columns used were: 5A molecular sieves 
for noncondensable gases, saturated silver nitrate in benzyl cyanide 
for unreacted 1,4-cyclohexadiene, and propylene carbonate for pu­
rification and analysis of cyclobutene and bicyclobutane. 

Product Identification. Major reaction products were identified 
by ir, NMR, and mass spectrometry and, when possible, by com­
parative VPC retention times. Minor reaction products (those 
formed in <7% yield) were identified by ir and mass spectrometry 
and by comparative VPC retention times. Isolated samples of 
product 17, 19, and 20 showed good correspondence to literature 
spectra.13'27'28 

Spectra of emfo-bicyclo[2.1.1]hexane-5-carboxaldehyde (11) 
are: high resolution mass of parent peak 110.0733 (obsd), 
110.0731 (calcd); mass spectrum (70 eV) m/e 110 (/R = 14), 109 
(13), 95 (19), 92 (13), 91 (8), 81 (100), 79 (47), 66 (54); ir (thin 
film) 3002, 2915, 2802, 2705, 1735 cm"1; NMR (C3D6O solvent) 
5 0.88 (1 H, d, J = 6 Hz), 1.74 (3 H, s over m), 2.48 (1 H, m), 
2.88 (2 H, m), 3.13 (2 H, m), 9.58 (1 H, d, J ~ 1 Hz).29 
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8Hl, may yield information concerning the geometry and 
the electronic constitution of the transition state. We report 
here a study on the cis-trans isomerization of azobenzene 
and />-chlorobenzenediazocyanide in a nonpolar solvent, cy-
clohexane, and in one having a substantial dipole, cyclohex-
anone (M = 3 D6). 

Results and Discussion 

The enthalpy of transfer of a transition state from one 
solvent to another, 8Hl, is obtained from the relation 

SIT = oAi/ s
r + 5A#* 

where SAHs
r is the enthalpy of transfer of the reactants 

from one solvent to the other and 6AHX is the difference in 
the enthalpies of activation in the two solvents. To obtain 
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Table I. Heats of Solution," AHS, and Enthalpies of Transfer of 
Reactants from Cyclohexane to Cyclohexanone,* 6 AHJ (kcal/mol) 

Table II. Enthalpies of Transfer, 6/ft, from Cyclohexane to 
Cyclohexanone, of the Transition States in the Cis-Trans 

Compd 

ci's-Azobenzene 

cz's-p-Chlorobenzene-
diazocyanide 

Solvent 

Cyclohexane 
Cyclohexanone 
Cyclohexane 
Cyclohexanone 

AHS° 

6.42 
3.45 
6.88 
2.92 

oAHJb 

-3 .0 

-4 .0 

Isomerization of Azo Compounds (kcal/mol) 

Compd S AHJ 

c/s-Azobenzene -3 .0 
ris-p-Chlorobenzenediazocyanide -4 .0 

a The difference in the activation enthaloies in 

SAH*a 

4.7 
4.2 

the two solv 

SHt b 

1.7 
0.2 

ents. 
" Integral heat of solution, at concentrations of 0.003 to 0.01 Af; 

standard deviations were less than 0.3 kcal/mol; temperature, 25°. 
A//s(cyclohexanone) — A//s(cyclohexane). 6 S A / / / 

SH1 IU 

4 H*= 22.0 

. N = N v ^ 

AH =26.7 

reactant 
cyclohexane solvent 

<UH; ;I 
L 

reactant, 
cyclohexanone solvent 

Figure 1. Relative enthalpies (kcal/mol) of the reactant and the transi­
tion state in the cis-trans isomerization of ci's-azobenzene in cyclohex­
ane and in cyclohexanone. 

the enthalpies of transfer of our two reactants, cw-azoben-
zene and m-/?-chlorobenzenediazocyanide, we measured 
their heats of solution in the two solvents of interest. The re­
sults are shown in Table I. The enthalpies of transfer of the 
reactants, 5A//S

r, and transition states, SH\ are listed in 
Table II and are shown graphically in Figures 1 and 2. 

Considering the case of azobenzene first, we see that al­
though the enthalpy of transfer of the dipolar molecule cis-
azobenzene (M = 3 D6) from the nonpolar to the dipolar sol­
vent is quite exothermic, the enthalpy of transfer of the 
transition state is endothermic. (See Figure 1.) 

Since dipole-dipole interactions are undoubtedly the 
principal factor determining transfer enthalpies in this sys­
tem, the cause of the exothermic SAHs

r for m-azobenzene 
must be the fact that solute-solvent interactions (c/s-azo-
benzene-cyclohexanone) are greater than the solvent-sol­
vent interactions of cyclohexanone (the "hole" energy). On 
the other hand the transition state appears to have lost some 
of these dipole-dipole interactions. Its solute-solvent (tran­
sition state-cyclohexanone) dipole-dipole interaction ener­
gy is apparently less than the cyclohexanone solvent-solvent 
interaction (the "hole" energy) and hence the transfer en­
thalpy, SHX, is endothermic. What changes in geometry and 
electron distribution caused this loss in solute-cyclohexa-
none solvent interaction energy in the transition state? 

The answer is not to be found in any possible resem­
blance between the transition state and the product. Al­
though the product of this reaction, /ra/w-azobenzene, has 
a zero dipole moment,6 its solvent transfer enthalpy, 8AHS

P, 
from cyclohexane to cyclohexanone is exothermic and only 

S AH* = A/f*(cyclohexanone) - A//*(cyclohexane), with the AH* 
values taken from ref 1 and 2. b 5//t = SAHS

T + SAH*. 

Table III. Heats of Solution,* AHS, and Enthalpies of Transfer of 
Products from Cyclohexane to Cyclohexanone,* S A/fsP (kcal/mol) 

Compd Solvent SAHSP 
trans-Azobenzene 

fttfrtS-p-Chlorobenzene-
diazocyanide 

Cyclohexane 
Cyclohexanone 
Cyclohexane 
Cyclohexanone 

6.31 
4.35 
7.60 
4.66 

-1.96 

-2.94 

a Integral heats of solution, at concentrations of 0.003 to 0.001 Af; 
standard deviations were less than 0.3 kcal/mol; temperature, 25°. 
b S AHSP = A/fs(cyclohexanone) - A/fs(cyclohexane). 

SH'=o.2 
L 

4 h r = 2 1 . 9 

N = N N 

% 
4 H T M 2 6 . 1 

reactant, 
cyclohexane solvent 

JAH[=? 4.0 

reactant, 
cyclohexanone solvent 

Figure 2. Relative enthalpies (kcal/mol) of the reactant and the transi­
tion state in the cis-trans isomerization of ci.s-4-chlorobenzenediazocy-
anide in cyclohexane and in cyclohexanone. 

a little smaller than that of the reactant, cw-azobenzene 
(see Table III). This observation agrees with the findings of 
Fuchs7'8 that in organic systems of this kind solvent transfer 
enthalpies are not too dependent on the overall molecular 
dipole moment. The solvent interacts with each functional 
group of the solute, each interaction making an additive 
contribution to the overall transfer enthalpy.8 

The local interactions of interest in the solvation of cis-
and trans- azobenzene are clearly those between the two N 
lone pair dipoles of the azobenzenes and the carbonyl group 
of cyclohexanone. When we consider the rotation mecha­
nism transition state (Figure 3) we see that these two di­
poles are maintained throughout the course of the rotation. 
The magnitude of the interaction between these two dipoles 
and solvent molecules should therefore be intermediate be­
tween that found in the reactant and that found in the prod­
uct. This is not observed. 

On the other hand, in the nitrogen inversion mechanism 
(Figure 3) one of the N lone pair dipoles disappears entirely 
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nitrogen inversion 
transition state 

Figure 3. 
(it is converted into a p orbital on the sp hybridized N). 
This would cause the substantial loss in the solute-cyclo-
hexanone solvent interaction energy in the transition state, 
which is in fact observed. 

The data and the arguments for the case of the cis-p-
chlorobenzenediazocyanide are substantially the same. The 
enthalpies of solvent transfer (cyclohexane —• cyclohexa-
none) for both the cis and the trans cyanide are larger than 
for the azobenzenes. This is clearly due to the fact that we 
have here, in addition to the two N lone pair dipoles, anoth­
er two dipoles, namely the C = N and the Ph—Cl dipoles. 
Since now three of these four dipoles are maintained 
throughout the nitrogen inversion process (Figure 4) the 
transition state enthalpy of transfer, 5H1, does not actually 
become endothermic, it is merely reduced to about zero 
(Figure 2). The rotational mechanism would again predict 
a SH1 value intermediate between the enthalpy of transfer 
of the reactants and the products (8AHs

r and 8AHS
P). This 

would be a substantial, exothermic transfer enthalpy, which 
is in fact not observed. The nitrogen inversion mechanism, 
on the other hand, would, as before, predict a reduction in 
the 8Hl value below that of the 8AH/ and 5AHSP values. 
This is in fact observed and we therefore believe that the ni­
trogen inversion mechanism is operating here also. 

It may well be that for certain unusual azo compounds, 
such as the para-donor/para'-acceptor substituted azoben­
zenes studied by Whitten and coworkers,4 the rotational 
mechanism may provide the pathway of lower energy. In 
general, however, it is probably the availability of the nitro­
gen inversion mechanism which makes N = N bonds more 
geometrically labile than C = C bonds. 

Experimental Section 

Materials. Azobenzene (Eastman) dissolved in petroleum ether 
was irradiated (G.E. sunlamp) and then fractionated on an alumi-

O nitreget inversion 
transition state 

Figure 4. 

na column using petroleum ether and 10:1 petroleum ether-metha-
nol as eluents. This yielded trans-azobenzene, mp 68-69° (lit.*a 

mp 68°), and n's-azobenzene, mp 69-70° (lit.la mp 71°), mixture 
mp 44° (lit.la eutectic 41°). m-p-Chlorobenzenediazocyanide, mp 
29-30° (lit.2 mp 29°) was prepared by treatment of />-chloroben-
zenediazonium chloride with HCN.2 fra«j-p-Chlorobenzenediazo-
cyanide, mp 104-105° (lit.2 mp 105°), was obtained by allowing 
the cis compound to rearrange in cyclohexane solution at room 
temperature. 

Heats of Solution. The calorimeter and the procedure employed 
have been described previously.5 
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